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Physics-data-driven intelligent optimization for
large-aperture metalenses
Yingli Ha1,2,3†, Yu Luo1,2,3†, Mingbo Pu1,2,3,4*, Fei Zhang1,2,3, Qiong He1,2,
Jinjin Jin1,2, Mingfeng Xu1,2,3,4, Yinghui Guo1,2,3,4, Xiaogang Li5,
Xiong Li1,2,4, Xiaoliang Ma1,2,4 and Xiangang Luo1,2,3,4*

Metalenses have gained significant attention and have been widely utilized in optical systems for focusing and imaging,
owing to their lightweight, high-integration, and exceptional-flexibility capabilities. Traditional design methods neglect the
coupling  effect  between  adjacent  meta-atoms,  thus  harming  the  practical  performance  of  meta-devices.  The  existing
physical/data-driven optimization algorithms can solve the above problems, but bring significant time costs or require a
large number of data-sets. Here, we propose a physics-data-driven method employing an “intelligent optimizer” that en-
ables us to adaptively modify the sizes of the meta-atom according to the sizes of its surrounding ones. The implementa-
tion of such a scheme effectively mitigates the undesired impact of local lattice coupling, and the proposed network mod-
el works well on thousands of data-sets with a validation loss of 3×10−3. Based on the “intelligent optimizer”, a 1-cm-dia-
meter metalens is designed within 3 hours, and the experimental results show that the 1-mm-diameter metalens has a
relative focusing efficiency of 93.4% (compared to the ideal focusing efficiency) and a Strehl ratio of 0.94. Compared to
previous inverse design method, our method significantly boosts designing efficiency with five orders of magnitude reduc-
tion in time. More generally, it may set a new paradigm for devising large-aperture meta-devices.
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 Introduction
In the past decade, meta-devices have shown remarkable
advantages  of  lightweight,  high  integration,  and  high
flexibility  capabilities1−9, which  have  led  to  the  emer-
gence of many new types of flat optical components, in-
cluding  lenses10,11,  holograms12−14,  vector  beam
generator2,15,  and  optical  encryption16,17.  Traditional

design method of meta-devices is based on phase match-
ing,  which  assigns  a  pre-defined  phase  profile  to  each
meta-atom18. The method is based on the assumption of
local  phase  approximation  and  each  phase  of  the  meta-
atom  is  obtained  using  periodic  boundary  conditions.
Therefore,  for  meta-devices  with  aperiodic  layouts,  the
traditional  design  method  neglects  the  local  lattice 
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coupling effect between adjacent meta-atoms, thus lead-
ing  to  errors  between  the  real  electric  field  distribution
and the ideal one19. Optimization algorithms can be used
to improve the efficiency of the meta-device, but it is still
not possible  to  completely  eliminate  the  error  intro-
duced by coupling effects through independent optimiz-
ation  of  each  pixel20. Therefore,  it  is  necessary  to  con-
sider the interaction of the entire device and optimize it
as a whole to obtain high-performance meta-devices.

Inverse  design  methods  could  iteratively  update  the
real vectorial  electric  field  for  each  pixel,  gradually  ap-
proaching the ideal electric field distribution, and can ef-
fectively  solve  the  problems  of  the  traditional  design
method21−24. The design of metadevices has incorporated
intelligent  methods,  yielding  outstanding  outcomes25−27.
Based on physics-driven or data-driven optimization al-
gorithms, abundant  methods  of  inverse  design  tech-
niques  have  been  studied28−32.  Among  them,  adjoint-
based optimization  has  demonstrated  success  in  realiz-
ing  device  functions,  such  as  metalens33−35,  disordered
metasurface23, and deflector36,37. The global optimal solu-
tion  could  be  achieved  by  searching  a  large  number  of
initial  structures22,38.  However,  the  above  physics-driven
methods  are  usually  used  to  optimize  small-scale  meta-
devices, typically, <100λ33. Most recently, more research-
ers have focused on inverse design methods based on the
deep  learning  (DL)  network39−44, and  considerable  res-
ults have been achieved45−49, such as deflector50,51, 3D vec-
torial  holography52,  multi-function  meta-device53,  and
multi-band absorber46. In addition, researchers try to al-
leviate the burden of numerical calculations, and acceler-
ate  optimization,  by  using  semi-supervised  learning
strategies54,  self-supervised  learning  strategies55,  data-
driven evolutionary algorithms56, and physics-driven DL
methods50,51,57. However,  further  optimization  of  the  in-
verse  design  is  highly  challenging  for  large-scale  meta-
devices with aperiodic meta-atoms. One current feasible
design  method  for  large-scale  aperiodic  meta-devices  is
based on  adjoint  simulation  and  Chebyshev  interpola-
tion. Although this method can improve the efficiency of
the meta-device, it still takes several hours to optimize a
device with a diameter of 1000λ. In addition, most effect-
ive  data-driven  methods  (DL  networks)  rely  heavily  on
vast  amounts  of  data-sets  (tens  of  thousands  of  data)58,
complex  network  models  (dozens  of  layers)59,  and  poor
generalization capabilities50,51,57.

In this study, we propose a physics-data-driven design
method that integrates a multi-objective optimization al-

gorithm with a DL approach. We have developed an “in-
telligent  optimizer ”  that  utilizes  an  end-to-end  design
framework  to  achieve  optimized  design  of  large-aper-
ture metalenses. Compared with physics-driven or data-
driven optimization  methods,  our  method  has  the  ad-
vantages of  simple  network  models  (16  layers  of  neur-
ons),  low  data-set  requirements  (~5000  data-sets),  and
short optimization time (6 min and 45 s@1 mm2, 2 h and
54 min@1 cm2). The simulation results provide evidence
that the proposed method is capable of effectively optim-
izing the polarization-multiplexed metalens. In principle,
the size of the designed metalens can be as large as hun-
dreds  of  millimeters.  It  is  experimentally  demonstrated
that  a  1-mm-diameter  metalens  with  an  F-number  of  1
(NA=0.44) could achieve a relative focusing efficiency of
93.4% (compared  to  the  ideal  focusing  efficiency).  Spe-
cifically, the same network is also applicable to optimize
metalenses with higher  F-numbers.  To illustrate  the  ad-
vantages of the proposed method, Table 1 is listed, which
sums up the representative parameters of various literat-
ure. In Table 1, RGB means the working wavelengths (λ)
are  red  (470  nm),  green  (532  nm),  and  blue  (633  nm).
Additionally,  h represents the hours,  min represents the
minutes and s represents the seconds.

 Design principle
Compared with previous DL networks that learn the per-
formance  of  the  full-device,  the  proposed  network  is
based  on  an  end-to-end  design.  As  shown  in Figure 1,
the  “intelligent  optimizer ”  consists  of  two  optimization
methods:  the  physics-driven  method  (adjoint-based
shape  optimization,  Adj  method)  and  the  data-driven
method (DL method). The adjoint-based shape optimiz-
ation is  utilized to  produce high-quality  data-sets,  while
the DL method is employed to enhance the focusing effi-
ciency  of  the  large-aperture  metalens.  To  describe  the
target of the optimization algorithm more intuitively, the
catenary-shaped electric field lines between two adjacent
meta-atoms  are  used  to  indicate  the  coupling  efficiency
between the two adjacent meta-atoms63−65. The inputs for
the  network  are  geometric  parameters  of  a  super  meta-
atom (composed  of  adjacent N × N meta-atoms)  which
are  sliced  from  the  initial  metalens  in  a  specific  order.
The outputs are geometric parameters of one meta-atom
which  is  sliced  from  the  optimized  metalens.  The  new
metalens  can  be  obtained  by  splicing  the  optimized
meta-atoms in a consistent sequence. As a result, the new
metalens  has  a  significantly  higher  focusing  efficiency
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than the initial one.
High-quality data-sets  can  provide  sufficient  and  ac-

curate information to the network, allowing it to capture
features better, improve its generalization ability, and in-
crease validation  accuracy.  Therefore,  choosing  appro-
priate and high-quality data-sets is an indispensable step
for training  DL  networks.  Here,  metalenses  are  artifi-
cially used as the basis of data-sets, which will be helpful
in  constructing  high-quality  data-sets.  Essentially,  the
optimization  of  the  metalens  is  to  make  the  real  phase
distribution closer  to  the  ideal  one  which  can  be  ob-
tained by Eq. (1). Therefore, coupling effects among ran-
dom phase  arrangement  structures  are  neglected  in  this

study.  This  strategy  has  contributed  to  reducing  the
amount  of  data-set  requirements  and  the  complexity  of
the  model  and  allows  the  network  to  converge  faster.
Furthermore,  to  endow  our  network  with  optimization
capabilities, we will use initial and optimized metalenses
as inputs and outputs. The optimization algorithm is the
Adj  method  and  more  details  pertaining  to  the  Adj
method  are  provided  in  Supplementary  information,
Section 1.

To reduce  the  computational  time  and  memory  re-
quirements associated  with  numerous  simulation  itera-
tions, metalenses with the diameters of 30.5 μm and 40.5
μm  are  used  in  our  dataset,  and  the  mesh  size  for  the

 
Table 1 | Examples to show the representative parameters and performance of various methods.

 

Ref. λ (nm) Material NA D (μm) Dimension Efficiency Method Time

Liang et al.20 532 TiO2 0.98 - 2D 67%a),e) Hybrid optimization algorithm -

Cai et al.29 532 TiO2 0.51 24 1D 60%a),e) Genetic algorithm 1000 s

Mansouree et al.33 850 a-Si 0.78 52 2D 65%a),e) Adjoint optimization 97 min/iteration

Li et al.35 RGB TiO2 0.3 10000 2D 15%a),e) Conservative convex separable approximation few hours

An et al.41 1550 p-Si 0.72 32 1D 77.62%b),d) Deep learning 200 s

Phan et al.60 640 SOI 0.5 200 1D 89%c),e) Topology optimization 100 h

Pestourie et al.61 RGB TiO2 0.3 235 1D - “Locally periodic” approximation 250 s

Arbabi et al.62 1550 a-Si 0.37 50 2D 82%a),e) High-contrast gratings -

This work 1550 SOS 0.44 50.5 2D 95.7%c),d) Physics-data-driven method 15 s
This work 1550 SOS 0.44 1000 2D 93.4%c),e) Physics-data-driven method 6 min and 45 s
This work 1550 SOS 0.44 10000 2D ~95%c),f) Physics-data-driven method 2 h and 54 min

a)Absolute focusing efficiency; b)Relative focusing efficiency; c)Relative focusing efficiency compared to the ideal efficiency; d)Simulated result;
e)Experimental result; f)Predict result

 

Optimize

EncodeAdjoint Input

Input

Intelligence optimizer

Forward Decode

Output

Small-aperture metalens

Large-aperture metalens

Fig. 1 | Working principle of the “intelligent optimizer”. The “intelligent optimizer” incorporates both Adj and DL methods. Data-sets of the DL

network are obtained from the small-aperture metalens optimized by the Adj method. Super meta-atoms of large-aperture metalens are fed into

the network one by one. Output meta-atoms are spliced together to create a new metalens with improved focusing efficiency.
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electric  field  simulation  at  50  nm.  The  optimization  of
the  small-aperture  metalens  can  be  separated  into  three
steps. First, the initial meta-atoms for the initial metalens
are  selected.  Eight  kinds  of  meta-atoms cover  the  phase
range  0-to-2π  by  replacing  the  ideal  phase  distribution
with  an  approximated  step-function.  To  maintain  high
transmission  efficiency,  the  period  and  height  of  meta-
atoms are set as 500 nm and 1000 nm, respectively. It is
important  to  note  that  the  period  and  height  of  the
metalens optimized by the DL method should be consist-
ent  with  the  small-aperture  metalens.  Second,  initial
metalenses are designed. We designed polarization-mul-
tiplexed  metalenses  that  can  independently  control x-
and y- polarized  light.  The  F-numbers  of  the  above
metalenses  are  both  1,  and  the  focus  spots  for x-polar-
ized  incident  light  and y-polarized  incident  light  are  at
the  center  of  the  focal  plane.  Therefore,  the  modulation
of x-  and y-polarization  is  identical  for  each  initial
metalens, leading to the same width and length for each
meta-atom. The width/length of each meta-atom for the
initial  metalens  is  determined  according  to  the  phase
profile given by Eq. (1). 

φ =
2π
λ
(f−

√
f 2 + (x− x0)2 + (y− y0)2) , (1)

where f is  the focal  length, λ is  the working wavelength,
and x and y are the spatial positions on the lens. x0 and y0

correspond  to  the  displacement  of  the  focal  spot  from
the center  of  the  metalens.  There  is  a  one-to-one  map-
ping between each phase and the size of the meta-atom,
and  the  phase  accuracy  depends  on  the  kinds  of  meta-
atoms.  At  last,  the  Adj  method  is  used  to  optimize  the
real electric field distribution. Although the Adj method
is  also  useful  for  random  distribution  structures,  it  will
enforce  the  one-to-one  mapping  to  become  many-to-
one, bringing greater challenges for the network training.
Taking the metalens with a diameter of 40.5 μm (81×81
meta-atoms) as  an  example,  after  20  optimization itera-
tions, all  the meta-atoms sizes have been effectively cor-
rected. As shown in Fig. 2(a), there is a difference of ±40
nm in widths between initial and optimized meta-atoms.
Finally,  metalenses  have  Strehl  ratios  of  0.96/0.958  and
0.95/0.945  for x/y-polarized  light.  The  figure  of  merit
(FoM)  is  desired  transmitted  field  distribution  which
also indicates the Strehl ratio of the metalens.

Next,  metalenses  before  and  after  optimization  are
used to build data-sets, that is, to carry out data pre-pro-
cessing  steps  which  can  be  separated  into  two  steps.

Firstly, the  initial  metalenses  are  divided  into  many  su-
per meta-atoms  whose  widths/lengths  ultimately  be-
come the input data-sets. Considering that a coupling ef-
fect  occurs  within  the  distance  range  between  a  meta-
atom and its  surrounding two layers of meta-atoms, the
size of a super meta-atom is 5×5 with a sliced interval of
1,  and the output  starting sampling position are  located
at  the  third  row  and  third  column  of  the  sampled
metalens. This means the design-loop will work on a 5×5
array with overlap. Since the initial metalens is isotropic,
the input data-sets can only consist of widths or lengths.
Secondly, the  output  data-sets  are  derived  from the  op-
timized metalens. One output data-set is 1×2 vector data
consisting  of  the  width  and  length  of  one  meta-atom,
which is  the modified meta-atom positioned at  the cen-
ter  of  the  super  meta-atoms.  Because  the  FoM  of  Adj
method  is  based  on  both x-  and y-  polarized  incident
light,  it  makes  the  meta-atom  eventually  anisotropic,
leading  to  the  different  width  and  length.  The  initial
widths/lengths distribution of a metalens is shown in Fig.
2(b).  There  are  two  types  of  super  meta-atoms,  namely
continuous change  (smooth)  box  Ⅰ and  discontinuous
change (rough) box Ⅱ.  The features of a smooth region
are  that  the  widths/lengths  of  the  meta-atoms  in  the
same region  are  increased,  decreased,  or  remain  un-
changed  along  any  direction.  On  the  contrary,  regions,
where the widths/lengths change do not follow the above
three patterns are referred to as rough regions. As a res-
ult, the metalens is divided into many super meta-atoms.
Finally,  we  have  9178  data-sets  consisting  of  two
metalenses, of which 3960 data-sets belong to smooth re-
gions and 5218 belong to the rough region. In the follow-
ing,  the  validation  loss  of  the  network  will  prove  that
thousands of data-sets are enough for our network. Fig-
ure 2(c) shows the framework of the optimized network,
which consists of an AutoEncoder network (A-network)
and  an  inverse  design  network  (I-network).  The  input
data-sets are encoded and decoded, with the output data
of the A-network being equal to the input data, promot-
ing information depth mining. The latent layer carries all
the  information  of  the  original  input  data  in  a  different
form,  and  the  outputs  of  the  A-network  are  coupled  to
the I-network  which  is  utilized  to  generate  the  optim-
ized meta-atoms.

 Results and discussion
Two networks were trained for dealing with smooth and
rough  regions  of  data-sets.  The  architectures  of
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A-network  and  I-network  are  shown  in  Supplementary
information  (see  Section  2).  The  mean-absolute-error
(MAE)  loss  function  is  used  to  measure  the  difference
between  the  predicted  values  and  the  real  values,  and
helps the  optimizer  adjust  the  model  parameters  to  im-
prove the prediction accuracy.  After 5000 iterations,  the
MAEs for smooth and rough region networks are 3×10−3

and 2×10−3 (see  Supplementary  information,  Section  3),
corresponding to output errors of 3 nm and 2 nm (both
within  the  fabrication  error),  respectively.  The  adopted
network architecture,  encompassing  both  the  AutoEn-
coder network and the inverse design network, holds ad-
vantages over directly employing fullly connected neural
(FCN)  to  obtain  output.  Because  the  adopted  network
architecture can  encode  input  data  into  lower  dimen-
sional  hidden  representations,  it  establishes  a  more
matching  relationship  between  the  input  and  output
data, making it easier for the neural network to learn im-
portant features in the input data. The loss of the FCN is

7×10−3 which is greater than the loss of our network. The
details  of  the  FCN  network  and  its  performance  are
shown in Supplementary information (see Section 4).

The  same  as  the  design  of  the  initial  small-aperture
metalens, the  large-aperture  metalens  could  also  be  de-
signed by  the  same  eight  kinds  of  meta-atoms.  To  im-
prove the focusing efficiency of large-aperture metalens,
it will  be  sliced into  many super  meta-atoms,  each con-
sisting of 5×5 meta-atoms, and the input data to the net-
work are widths/lengths of a super meta-atom. Using the
trained DL network,  we get  many new output data-sets,
each  of  which  consists  of  the  lengths  and  widths  of  the
new meta-atom.  Finally,  the  output  data-sets  can  be  ar-
ranged on the same path as the input slice path to form a
new metalens. To verify the performance of the metalens
optimized by  the  Adj  method  and  our  method,  we  op-
timized  the  same  linear  polarization-multiplexed
metalens with a diameter of 50.5 μm using the aforemen-
tioned  methods.  The  electric  field  distribution  of  the
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strength structures are filtered by the I-network.
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designed metalenses can be obtained through Finite Dif-
ference Time Domain (FDTD) Solution software and the
vector diffraction  theory.  The  full-wave  simulation  res-
ults  proved  that  the  focusing  efficiencies  of  both
metalenses  mentioned  above  are  higher  than  the  initial
metalens at the working wavelength of 1550 nm.

Figure 3(a) and 3(b) shows  electric  field  distributions
and the intensity profiles for different metalens on the xy
focal  plane  and xz plane. After  15  days  of  20  optimiza-
tion iterations,  the  relative  and  absolute  focusing  effi-
ciencies  of  the  metalens  have  been  improved  to
87%/86.8%  and  78%/77.9%  with  the  Adj  method  for x-
and y-polarization,  respectively.  The  final  relative  and
absolute  focusing  efficiencies  of  the  metalens  designed
with  the  proposed  method  are  86.5%/87.1%  and
76%/76.6% for x- and y-polarized light, and the optimiz-
ation time is within 15 s. Here, the absolute focusing effi-
ciency is  defined as  the ratio between the light  intensity

from the focal spot and the incident intensity, which can
also be  calculated  by  the  product  of  transmission  effi-
ciency and the relative efficiency of the device. The relat-
ive focusing efficiency is defined as the ratio between the
light  intensity  from  the  focal  spot  and  the  focal  plane.
The  Strehl  ratios  of x-  and y-polarized  light  are
0.95/0.957 and 0.96/0.96  for  the  metalenses  designed by
the DL method and Adj method, respectively. Figure 3(c,
d) show the  widths  distribution  on  the y=0 plane  (x>0)
designed  by  three  methods  and  compare  them  with  the
initial  structure  distribution  on  the y=0 plane  (x>0).  As
shown  in Fig. 3(d),  there  is  a  difference  between  the
width obtained by the above two methods and the width
obtained by the traditional  method. Although the width
changes  in  each  pixel  are  inconsistent,  the  metalenses
formed  by  them  all  exhibit  high  focusing  efficiencies,
which  may  result  from  non-convex  optimization.  The
above  simulation  results  have  proved  that  the  method
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base on the DL network can achieve vector optimization
for  large-aperture  metalens  while  significantly  reducing
the required time by five orders of magnitude.

To  verify  the  optimization  capability  of  the  network
for larger-aperture metalenses,  two metalenses with dia-
meters of 60.5 μm and 100.5 μm were optimized, respect-
ively. The  electric  field  distributions  are  shown  in  Sup-
plementary  information  Section  4  (see Fig.  S6),  and  the
metalenses  have  the  efficiencies  and  Strehl  ratios  of
86.6%,  86.2%,  0.97,  and  0.96,  respectively.  In  summary,
the simulated focusing efficiency of metalenses with NA
of 0.44, varying in diameter, consistently exceeds 86%. It
can  be  inferred  that  the  relative  focusing  efficiency  of
metalenses with NA of 0.44 optimized by DL method is
about  95%  (compared  to  the  ideal  focusing  efficiency).
Furthermore, to validate the generalization ability of the
network, three metalenses with NAs of 0.3, 0.35, and 0.4
were optimized, and the corresponding electric field dis-
tributions are shown in Supplementary information Sec-
tion 5 (see Fig.  S7). The above metalenses have efficien-
cies and Strehl ratios of 86.4%, 86.6%, 87.7%, 0.94, 0.95,
and 0.95,  respectively.  The  above  results  have  demon-
strated that the trained network can optimize large-aper-
ture metasurfaces with F-numbers ≥ 1 when the data-sets
consists of metalens with an F-number of 1.

For further proof of concept, the optimized metalenses
with diameters of 100.5 μm, 500 μm, and 1 mm with F-
numbers  of  1  were  fabricated  using  the  electron  beam
lithography technology  on  the  silicon-on-sapphire  sub-
strate. Figure 4(a) shows the optical  microscope and the
scanning electron  microscope  (SEM)  images  of  the  fab-
ricated  metalenses,  where  the  relative  efficiencies  of  the
metalenses under  the  illumination  of  the  linear  polar-
ized laser  beam  are  measured.  Considering  the  photo-
electric response of the CCD to the incident laser energy
shows  certain  nonlinear  response  characteristics66,  a
power meter is used to detect the relative efficiency (see
Fig. S10, Supplementary information for experiment set-
up). A focusing lens and a precision pinhole are used to
constrain the size of the incident light and focused spot,
respectively. Lens modulation ensures that the beam size
of the incident light is smaller than that of the metalens.
Additionally,  a  precision  pinhole  is  placed  behind  the
metalens to filter out power outside the focus range.

The fabricated metalenses all have an NA of 0.44, and
the ideal FWHMs of the metalenses are ~1.57 μm, calcu-
lated by  the  vectorial  angle  spectrum  method.  The  dia-
meter of the precision pinhole is 10±1 μm, matching the

size of the effective focal spot (a circular region centered
on  the  peak  intensity  with  a  radius  of  treble  FWHMs,
and the diameter is 9.42 μm). The power meter is placed
behind  the  precision  pinhole  to  measure  the  focusing
power and the focal plane power will be measured when
the precision pinhole is  removed.  Considering the short
focal  length  of  a  metalens  with  a  diameter  of  100.5  μm,
an objective lens with 100× magnification is used to pair
with  a  tube  lens  to  magnify  the  image  of  the  focal  spot.
An aperture with diameter of 1 mm is chosen to replace
the  precision  pinhole,  and  other  processes  are  the  same
as above. Under the illumination of a 1550 nm laser, the
relative focusing efficiency of the DL-optimized metalens
with  a  diameter  of  1  mm is  85%,  which  is  93.4% of  the
ideal  relative  focusing  efficiency.  Furthermore, Fig. 4(d)
shows  the  relative  focusing  efficiencies  (compare  to  the
ideal  focusing  efficiency)  and  Strehl  ratios  of  the  three
metalenses.

Furthermore,  the  distribution  of  the  focal  spot  on xy
and xz planes is shown in Fig. 4(b, c). Figure 4(b) shows
the  normalized  focusing  intensity  along  the  optical  axis
of  the  ideal  metalens  and  the  DL-optimized  metalens,
where the sub-maximum intensity of the ideal focal spot
is  used  to  normalize  the  intensity  of  the  DL-optimized
focal  spot  and  the  ideal  focal  spot.  The  Strehl  ratio  is
defined as the ratio of the maximum intensity of the DL-
optimized focal  spot and the ideal  focal  spot.  Objectives
with large NA=0.7  are  used to  avoid the  limited field  of
view  of  transmitted  light.  The  experimental  set-up  is
shown  in Fig.  S12 (Supplementary  information).  The
imaging performance of the metalens (with a diameter of
~1 mm) is further characterized by the USAF 1951 resol-
ution  test  chart  (see Fig.  S13, Supplementary  informa-
tion  for  experiment  set-up),  as  shown  in Fig. 4(e).  The
imaging result is obtained from group 7, where the smal-
lest feature size is 2.19 μm of element No.6, and it can be
clearly  resolved.  As  a  comparison,  the  imaging  result  of
the ideal metalens (with a diameter of ~1 mm) is demon-
strated,  which  is  obtained  through  the  convolution  of
ideal  metalens  focusing  spot  and  resolution  test  chart.
Experimental  results  show  that  the  electromagnetic
properties of metalenses designed by our DL method are
close to those of ideal metalenses.

 Conclusions
In  this  work,  an  “intelligent  optimizer ”  is  proposed  to
solve the  challenges  associated  with  efficiently  optimiz-
ing  large-aperture  2D  metalens.  The  simulated  and
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experimental results  demonstrate  the  significant  poten-
tial  of  this  optimizer  in  developing  high-efficiency
metalens technology.  By  leveraging  the  geometry  para-
meters  information  from  a  high-performance  metalens
with  a  μm-scale  diameter,  we  successfully  optimize  the

geometry parameters of a cm-scale metalens. The optim-
ized  metalens,  with  a  diameter  of  1  mm  consisting  of
4×106 meta-atoms,  can  be  optimized  only  in  6  min  and
45 s.  It  has a relative focusing efficiency of 93.4% (com-
pared  to  ideal  focusing  efficiency)  and  a  Strehl  ratio  of
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0.94. Furthermore, as aforementioned, the optimizer has
the ability  to scale  downwards.  Each size of  meta-atoms
in the metalens represents a phase, which means that op-
timizing the size of a meta-atom is also an optimization
of the phase. By adding incident wavelength information
to the network or increasing the number of input struc-
tures,  we  can  optimize  the  more  complex  structural
functional  devices,  as  our  proposed  method  essentially
suppresses coupling effects and does not target a specific
functional device. The proposed optimization is not lim-
ited  to  polarization-multiplexed  metalenses,  and  it  can
also  be  used for  other  meta-devices,  such as  achromatic
metalenses, wide-angle  metalenses,  orbital  angular  mo-
mentum metalenses, meta-holograms, etc.

 Methods
The full-wave  simulations  of  the  metalenses  were  per-
formed  with  FDTD  Solutions.  Both x-  and y-polarized
plane waves were normally incident from the bottom of
the  metalenses  in  the  +z direction,  with  the  boundary
conditions are set as the perfectly matched layer along x,
y,  and z directions.  The  working  wavelength  was  1550
nm, and the mesh size was 50 nm. The data-sets were es-
tablished using the FDTD solver, and it took ~15 days to
complete 20 iterations of optimization. The DL network
was trained using Tensorflow and the training time was
about 40 minutes. The optimization time for metalenses
with diameters of 100.5 μm, 500 μm, 1000 μm, and 10000
μm are 20 s, 2 min and 45 s, 6 min and 45 s, and 2 h and
54  min,  respectively.  Except  from  the  simulation  of  the
electric  field,  all  the  computation  is  dealt  with  the
Pycharm software on an Intel Xeon Gold 6254 CPU Pro-
cessor  with  a  base  clock  of  3.09  GHz,  128  GB  of  RAM.
The metasurfaces were fabricated by electron beam litho-
graphy  techniques.  The  fabrication  flow  chart  and  the
SEM images of the metalens with a diameter of 1 mm are
shown  in  Supplementary  information Figs.  S8 and S9.
The electric field and the imaging results of the metalens
were  characterized  by  the  setup  (see  Supplementary  in-
formation Figs.  S10,  S12,  and S13 for detailed  descrip-
tion).
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